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Abstract

Based on the thin-plate theory and the two-dimensional (2D) viscoelastic differential constitutive relation, the

differential equation of motion of the viscoelastic rectangular plate subjected to uniformly distributed tangential

follower force in Laplace domain is deduced, the equation is suitable for various viscoelastic models of differential

type. The differential equation of motion of the viscoelastic plate constituted by the Kelvin–Voigt model under the

action of uniformly distributed tangential follower force in time domain is also derived. The generalized eigenequations

of non-conservative viscoelastic rectangular plate, with four edges simply supported, two opposite edges simply

supported and other two edges clamped are established by the differential quadrature method, and the curves of real

parts and imaginary parts of the first three-order dimensionless complex frequencies vs. uniformly distributed tangential

follower force are obtained, the factors influencing the dynamic stability of the visoelastic rectangular plate are

discussed.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

There exists a considerable literature devoted to the stability and vibration of the elastic plate subjected
to non-conservative forces (in particular the follower forces). Adali [1] studied the stability of a plate
under a follower force and an in-plane force. He showed that, depending on the relative magnitudes of the
follower force and the in-plane force, the plate may lose its stability by flutter or divergence. Leipholz and
Pfendt [2] used extended Galerkin’s theory to analyze the plate with distributed follower forces acting
on the surface of a plate. By the Levy method and the finite difference method, Wang and Ji [3] investigated
the dynamic stability of six typical rectangular plates with two opposite edges simply supported under
the action of a uniformly distributed tangential follower force. Zuo and Shreyer [4] described divergence
and flutter instability regions for simply supported plates with a combination of fixed and follower forces.
Kim and Park [5] investigated the dynamic stability of a completely free plate subjected to intermediate
follower force. Kim and Kim [6] studied the dynamic stability of a plate under a follower force through
the finite element method based on the Kirchhoff–Love plate theory and the Mindlin plate theory. Jayaraman
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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and Struthers [7] analyzed the divergence and flutter instabilities of an orthotropic rectangular plate subjected
to follower forces.

With the wide application of viscoelastic materials nowadays, it is necessary to illustrate the viscoelastic
properties of the structure. To the author’s knowledge, there are relatively few investigations on the stability
characteristics of the viscoelastic structure under follower force [8–10], however, most of these studies have
been confined to unidimension, that is to say the research objects are the viscoelastic column and the
viscoelastic beam. Few papers have been presented on stability problems for the non-conservative viscoelastic
plate, because there are two difficulties in studying this problem, one is the complexity of the two-dimensional
(2D) viscoelastic differential constitutive relation and the other is that the differential equation of motion
of a non-conservative viscoelastic plate is a four-order partial differential equation with complex variable
coefficient, which belongs to the complex eigenvalue problem.

The purposes of this paper are to establish the general differential equation of motion of a viscoelastic plate
subjected to distributed tangential follower forces in time domain, to analyze the vibration and stability of a
viscoelastic plate constituted by the Kelvin–Voigt model under the action of uniformly distributed tangential
follower force and to study the effects of aspect ratio and dimensionless delay time on the dynamic stability of
the viscoelastic plate constituted by the Kelvin–Voigt model.
2. Differential equation of a motion of non-conservative viscoelastic plate

Consider a viscoelastic rectangular thin plate subjected to uniformly distributed tangential follower force q0,
as shown in Fig. 1. The plate has the length a, width b and thickness h in the x, y and z direction, respectively,
the density of the material is r.

The general 3D viscoelastic differential constitutive relation is as follows:

P0sij ¼ Q0eij ;

P00sii ¼ Q00�ii:

(
(1)

The Laplace transformation of Eq. (1)

P̄
0
s̄ij ¼ Q̄

0
ēij ;

P̄
00s̄ii ¼ Q̄

00
�̄ii;

(
(2)

where sij and eij are deviatoric tensor of stress and strain, sii and eii are spherical tensor of stress and strain, and
the operators

P0 ¼
Xl

k¼0

p0k
dk

dtk
; Q0 ¼

Xr

k¼0

q0k
dk

dtk
; P00 ¼

Xl1

k¼0

p00k
dk

dtk
; Q00 ¼

Xr1

k¼0

q00k
dk

dtk
; p0k; q0k; p00k; q00k

depend on the properties of the material, and the bar on every operator and every function denotes the
Laplace transformation.
z

y

a

b

x
q0

Fig. 1. Non-conservative viscoelastic rectangular plate.
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For plane stress problem, the constitutive equations of the linear viscoelastic material in the Laplace domain
[11] are

P̄
0
ðP̄
0
Q̄
00
þ 2Q̄

0
P̄
00
Þs̄x ¼ Q̄

0
ð2P̄
0
Q̄
00
þ Q̄

0
P̄
00
Þ�̄x þ Q̄

0
ðP̄
0
Q̄
00

� Q̄
0
P̄
00
Þ�̄y;

P̄
0
ðP̄
0
Q̄
00
þ 2Q̄

0
P̄
00
Þs̄y ¼ Q̄

0
ðP̄
0
Q̄
00

� Q̄
0
P̄
00
Þ�̄x þ Q̄

0
ð2P̄
0
Q̄
00
þ Q̄

0
P̄
00
Þ�̄y;

P̄
0t̄xy ¼ Q̄

0
�̄xy;

8>><
>>: (3)

where s̄x, s̄y, t̄xy, �̄x, �̄y, �̄xy are the Laplace transforms of sx, sy, txy, �x, �y, �xy, respectively, P̄
0

, Q̄
0

, P̄
00
, Q̄
00
are

the Laplace transforms of differential operators P0, Q0, P00, Q00, respectively.
Introducing the differential operators

P̄0 ¼ P̄
0
ðP̄
0
Q̄
00
þ 2Q̄

0
P̄
00
Þ;

Q̄0 ¼ Q̄
0
ð2P̄
0
Q̄
00
þ Q̄

0
P̄
00
Þ;

Q̄1 ¼ Q̄
0
ðP̄
0
Q̄
00

� Q̄
0
P̄
00
Þ:

8>><
>>: (4)

Eq. (3) can be simplified as

P̄0s̄x ¼ Q̄0�̄x þ Q̄1�̄y;

P̄0s̄y ¼ Q̄1�̄x þ Q̄0�̄y;

P̄
0t̄xy ¼ Q̄

0
�̄xy:

8>><
>>: (5)

The bending moment Mx, My, twisting moment Mxy, Myx on the per unit length of the plate are

Mx ¼

Z h=2

�h=2
zsx dz; My ¼

Z h=2

�h=2
zsy dz, (6.1)

Mxy ¼

Z h=2

�h=2
ztxy dz; Myx ¼

Z h=2

�h=2
ztyx dz. (6.2)

Applying the operators P̄0, P̄
0
to the Laplace transformation results of Eqs. (6.1) and (6.2), respectively,

then

P̄0ðM̄xÞ ¼
R h=2
�h=2 zP̄0ðs̄xÞdz;

P̄0ðM̄yÞ ¼
R h=2
�h=2 zP̄0ðs̄yÞdz;

P̄
0
ðM̄xyÞ ¼

R h=2
�h=2 zP̄

0
ðt̄xyÞdz:

8>>>><
>>>>:

(7)

Substituting Eq. (5) into Eq. (7), one obtains the relations between moment and the Laplace transformation
of deflection w as

P̄0ðM̄xÞ ¼ �
R h=2
�h=2 z2 Q̄0

q2w̄

qx2
þ Q̄1

q2w̄
qy2

� �
dz;

P̄0ðM̄yÞ ¼ �
R h=2
�h=2 z2 Q̄1

q2w̄
qx2
þ Q̄0

q2w̄
qy2

� �
dz;

P̄
0
ðM̄xyÞ ¼ P̄

0
ðM̄yxÞ ¼ �

R h=2
�h=2 zQ̄

0 q2w̄
qxqy

� �
dz:

8>>>>>>>>><
>>>>>>>>>:

(8)

According to the D’Alembert principle, the equilibrium equation of the non-conservative plate can be
given as

q2Mx

qx2
þ 2

q2Mxy

qxqy
þ

q2My

qy2
� q0ða� xÞ

q2w

qx2
� rh

q2w

qt2
¼ 0. (9)
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Applying P̄0P̄
0
to the Laplace transformation of Eq. (9), then

P̄0P̄
0 q2M̄x

qx2

� �
þ 2P̄0P̄

0 q2M̄xy

qxqy

 !
þ P̄0P̄

0 q2M̄y

qy2

 !
� P̄0P̄

0
q0ða� xÞ

q2w̄
qx2
� rhP̄0P̄

0
s21w̄ ¼ 0. (10)

If the partial derivative is continuous, Eq. (10) can be rewritten as

P̄
0 q2 P̄0ðM̄xÞ

� �
qx2

 !
þ 2P̄0

q2 P̄
0
ðM̄xyÞ

� �
qxqy

 !
þ P̄

0 q2 P̄ðM̄yÞ
� �
qy2

 !
� P̄0P̄

0
q0ða� xÞ

q2w̄
qx2
� rhP̄0P̄

0
s21w̄ ¼ 0. (11)

Substituting Eq. (7) into Eq. (11), the differential equation of the non-conservative viscoelastic plate in the
Laplace domain is deduced as

h3

12
P̄
0
Q̄0r

4w̄þ P̄0P̄
0
q0ða� xÞ

q2w̄
qx2
þ rhP̄0P̄

0
s21w̄ ¼ 0. (12)

Eq. (12) has extensive application and is suitable for various viscoelastic models, the corresponding
differential equations can be obtained by substituting the different differential operters P̄0, Q̄0, P̄

0
into the

equation.
Assuming that the material of the plate obeys elastic behavior in dilatation and the Kelvin–Voigt law in

distortion, the constitutive equations are as follows [12]:

sij ¼ 2Geij þ 2Z_eij ;

sii ¼ 3K�ii:

(
(13)

Performing the Laplace transformation on Eq. (13), we have

P̄
0
¼ 1; Q̄

0
¼ 2G þ 2Zs1;

P̄
00
¼ 1; Q̄

00
¼ 3K :

(
(14)

Substituting Eq. (14) into Eq. (12), and carrying out the Laplace inverse transformation, a differential
equation of the non-consersative viscoelastic rectangular plate constituted by the Kelvin–Voigt model in the
time domain is obtained:

h3

12
A3 þ A4

q
qt
þ A5

q2

qt2

� �
r4wþ q0ða� xÞ A1 þ A2

q
qt

� �
q2w
qx2
þ rh A1 þ A2

q
qt

� �
q2w

qt2
¼ 0, (15)

where A1 ¼ 3K þ 4G, A2 ¼ 4Z, A3 ¼ 2Gð6K þ 2GÞ, A4 ¼ 8GZþ 12KZ, A5 ¼ 4Z2, G ¼ E=2ð1þ mÞ,
K ¼ E=3ð1� 2mÞ, m is Poisson’s ratio,

r2w ¼
q2w
qx2
þ

q2w

qy2
; r4w ¼

q4w

qx4
þ 2

q4w

qx2qy2
þ

q4w
qy4

.

Introduce the dimensionless variables and parameters

x ¼
x

a
; c ¼

y

b
; W̄ ¼

w

h
; l ¼

a

b
; q ¼

12q0a
3ð1� m2Þ

Eh3
,

t ¼
th

a2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E

12rð1� m2Þ

s
; H ¼

h

a2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E

12rð1� m2Þ

s
Z
E
. ð16Þ

Eq. (15) can be rewritten as

1þ
4ð2� mÞð1þ mÞ

3
H

q
qt
þ

4ð1� 2mÞð1þ mÞ2

3
H2 q2

qt2

� �
r4W̄

þ qð1� xÞ 1þ
4ð1� 2mÞð1þ mÞ

3ð1� mÞ
H

q
qt

� �
q2W̄

qx2
þ 1þ

4ð1� 2mÞð1þ mÞ
3ð1� mÞ

H
q
qt

� �
q2W̄
qt2
¼ 0, ð17Þ
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where t is dimensionless time, H is the dimensionless delay time of the material and

r4W̄ ¼
q4W̄

qx4
þ 2l2

q4W̄

qx2qc2
þ l4

q4W̄

qc4
.

Suppose that the solution to Eq. (17) takes the form

W̄ ðx;c; tÞ ¼W ðx;cÞ ejot, (18)

where j ¼
ffiffiffiffiffiffiffi
�1
p

and o is the dimensionless complex frequency.
Substituting Eq. (18) into Eq. (17) gives

D1r
4W þ qð1� xÞD2

q2W

qx2
þD2j

2o2W ¼ 0, (19)

where

D1 ¼ 1þ
4ð2� mÞð1þ mÞ

3
Hoj�

4ð1� 2mÞð1þ mÞ2

3
H2o2; D2 ¼ 1þ

4ð1� 2mÞð1þ mÞ
3ð1� mÞ

Hoj,

r4W ¼
q4W

qx4
þ 2l2

q4W

qx2qc2
þ l4

q4W

qc4
.

The boundary conditions of the plate with four edges simply supported are as follows:

x ¼ 0; 1 : W ðx;cÞ ¼
q2W

qx2
¼ 0;

c ¼ 0; 1 : W ðx;cÞ ¼
q2W

qc2
¼ 0:

8>>>><
>>>>:

(20)

The boundary conditions of the plate with two opposite edges simply supported and other two edges
clamped are as follows:

x ¼ 0; 1 : W ðx;cÞ ¼
qW

qx
¼ 0;

c ¼ 0; 1 : W ðx;cÞ ¼
q2W

qc2
¼ 0:

8>>><
>>>:

(21)
3. Differential quadrature (DQ) method

The basic idea of the DQ method [13] is to approximate the partial derivatives of a function with respect to a
spatial variable at any discrete point as the weighted linear sum of the function values at all the discrete points
chosen in the solution domain of the spatial variable. Postulating smooth function f ðx; yÞ in region 0pxpa,
0pypb, the rth order partial derivative of f ðx; yÞ with respect to x, the sth order partial derivative of f ðx; yÞ
with respect to y and the (r+s)th order mixed partial derivative of f ðx; yÞ with respect to both x and y can be
discretely expressed at the point ðxi; yjÞ as [14]

qrf ðxi; yjÞ

qxr
¼
XN

k¼1

A
ðrÞ
ik f ðxk; yjÞ ði ¼ 1; 2; . . . ;N; r ¼ 1; 2; . . . ;N � 1Þ, (22)

qsf ðxi; yjÞ

qys
¼
XM
m¼1

A
ðsÞ
jmf ðxi; ymÞ ðj ¼ 1; 2; . . . ;M; s ¼ 1; 2; . . . ;M � 1Þ, (23)
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qrþsf ðxi; yjÞ

qxrqys
¼
XN

k¼1

A
ðrÞ
ik

XM
m¼1

A
ðsÞ
jmf ðxi; ymÞ, (24)

where N, M is the number of grid points in the x and y direction, respectively, A
ðrÞ
ik and A

ðsÞ
jm are the weighted

coefficients, and they are defined by [15]

A
ð1Þ
ik ¼

QN
m¼1
mai;k

ðxi � xmÞ

,QN
m¼1
mak

ðxk � xmÞ ði; k ¼ 1; 2; . . . ;N; kaiÞ;

PN
m¼1
mai

1

xi � xm
ði; k ¼ 1; 2; . . . ;N; k ¼ iÞ;

8>>>>>><
>>>>>>:

(25)

A
ð1Þ
jm ¼

QM
m¼1

maj;m

ðyj � ymÞ

,QM
m¼1
mam

ðym � ymÞ ðj;m ¼ 1; 2; . . . ;M; majÞ;

PM
m¼1
maj

1

yj � ym
ðj;m ¼ 1; 2; . . . ;M; m ¼ jÞ:

8>>>>>><
>>>>>>:

(26)

In the case of r ¼ 2; 3; . . . ;N � 1; s ¼ 2; 3; . . . ;M � 1,

A
ðrÞ
ik ¼

r A
ðr�1Þ
ii A

ð1Þ
ik �

A
ðr�1Þ
ik

xi � xk

 !
ði; k ¼ 1; 2; . . . ;N; kaiÞ;

�
PN
m¼1
mai

A
ðrÞ
im i ¼ 1; 2; . . . ;N; 1prpðN � 1Þð Þ;

8>>>>><
>>>>>:

(27)

A
ðsÞ
jm ¼

s A
ðs�1Þ
jj A

ð1Þ
jm �

A
ðs�1Þ
jm

yj � ym

 !
ðj;m ¼ 1; 2; . . . ;M; majÞ;

�
PM
m¼1
maj

A
ðsÞ
jm j ¼ 1; 2; . . . ;M; 1pspðM � 1Þð Þ:

8>>>>><
>>>>>:

(28)

In this paper, the distribution forms of the grid points are non-uniform, the plate with four edges
simply supported adopts the weighted coefficient method to treat the boundary conditions and the plate
with two opposite edges simply supported and other edges clamped adopts the d method combining
with the weighted coefficient method to treat the boundary conditions. The distribution forms of the grid
points are

x1 ¼ 0; xN ¼ 1; xi ¼
1

2
1� cos

2i � 3

2N � 4
p

� �� �
ði ¼ 2; 3 � � �N � 1Þ;

c1 ¼ 0; cN ¼ 1; ci ¼
1

2
1� cos

2i � 3

2N � 4
p

� �� �
ði ¼ 2; 3 � � �N � 1Þ;

8>>><
>>>:

(29)

x1 ¼ 0; x2 ¼ d; xN�1 ¼ 1� d; xN ¼ 1; xi ¼
1

2
1� cos

i � 2

N � 3
p

� �� �
ði ¼ 3; 4; . . . ;N � 2Þ;

c1 ¼ 0; cN ¼ 1; ci ¼
1

2
1� cos

2i � 3

2N � 4
p

� �� �
ði ¼ 2; 3; . . . ;N � 1Þ:

8>>><
>>>:

(30)
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According to the DQ method’s procedures, Eq. (19) can be discretized into the following forms:

XN

k¼1

Aik
ð4ÞW kj þ 2l2

XN

m¼1

Ajm
ð2Þ
XN

k¼1

Aik
ð2ÞW km þ l4

XN

k¼1

Ajk
ð4ÞW ik

 !
þ qð1� xÞ

XN

k¼1

Aik
ð2ÞW kj

þ
4ð2� mÞð1þ mÞ

3
Hj

XN

k¼1

Aik
ð4ÞW kj þ 2l2

XN

m¼1

Ajm
ð2Þ
XN

k¼1

Aik
ð2ÞW km þ l4

XN

k¼1

Ajk
ð4ÞW ik

 !"

þ
4ð1� 2mÞð1þ mÞ

3ð1� mÞ
Hjqð1� xÞ

XN

k¼1

Aik
ð2ÞW kj

#
oþ

4ð1� 2mÞð1þ mÞ
3ð1� mÞ

H3j3Wo3

þ
4ð1� 2mÞð1þ mÞ2

3
H2j2

XN

k¼1

Aik
ð4ÞW kj þ 2l2

XN

m¼1

Ajm
ð2Þ
XN

k¼1

Aik
ð2ÞW km þ l4

XN

k¼1

Ajk
ð4ÞW ik

 !
þ j2W

" #
o2 ¼ 0.

ð31Þ

The differential quadrature form of boundary conditions (20) are

W 1j ¼W Nj ¼W i1 ¼W iN ¼ 0; i; j ¼ 1; 2; . . . ;N;PN
k¼1

A
ð2Þ
ik W kj ¼ 0; i ¼ 1;N; j ¼ 1; 2; . . . ;N;

PN
k¼1

A
ð2Þ
jk W ik ¼ 0; j ¼ 1;N; i ¼ 1; 2; . . . ;N

8>>>>>><
>>>>>>:

(32)

the differential quadrature form of boundary conditions (21) are

W 1j ¼W Nj ¼W i1 ¼W iN ¼ 0; i; j ¼ 1; 2; . . . ;N;PN
k¼1

A
ð1Þ
ik W kj ¼ 0; i ¼ 2;N � 1; j ¼ 2; 3; . . . ;N � 2;

PN
k¼1

A
ð2Þ
jk W ik ¼ 0; j ¼ 1;N; i ¼ 1; 2; . . . ;N:

8>>>>>><
>>>>>>:

(33)

Eq. (31) and boundary conditions (32) or (33) can be written in the matrix form as

o3½Q� þ o2½R� þ o½G� þ ½K �
	 


fW kjg ¼ f0g, (34)

where the matrices ½Q�; ½R�; ½G� and ½K � involve such parameters as dimensionless delay time H, dimensionless
follower force and aspect ratio of the plate. Eq. (34) is a generalized eigenvalue problem.

4. Results and discussions

In the case of H ¼ 0, Eq. (19) is reduced to the differential equation of motion of the non-conservative
elastic plate. In order to verify the DQ method, the first three-order natural frequencies and the critical loads
of the non-conservative elastic plate with two different boundary conditions are calculated firstly. The results
in this paper are in good agreement with those in Refs. [16,3], which can be seen from Tables 1 and 2. The
node number N ¼ 9.

In Table 2, qd1 and qd2 denote the first and the second-order divergence load, respectively, qf denotes the
flutter load. Now, the dynamic stability of the non-conservative viscoelastic rectangular plate constituted by
the Kelvin–Voigt model is calculated and analyzed.

4.1. The plate with four edges simply supported

Fig. 2 shows the variation of the first three-order dimensionless complex frequencies of the viscoelastic plate
with dimensionless follower force q for H ¼ 10�5, l ¼ 1. It can be seen that when dimensionless follower force
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Table 2

Comparison of the critical load of elastic plate with Ref. [3]

Aspect ratio, l Boundary condition The solution in this paper Existing results [3]

1 SSSS qd1 ¼ 67.5, qd2 ¼ 132.10 qd1 ¼ 67.4, qd2 ¼ 131.60

CSCS qd1 ¼ 143.5, qf ¼ 168 –

1.5 SSSS qd1 ¼ 136.75, qd2 ¼ 224.72 qd1 ¼ 136.56, qd2 ¼ 221.28

CSCS qf ¼ 202.75 –

2 SSSS qd1 ¼ 224.8, qd2 ¼ 340.5 qd1 ¼ 223.55, qd2 ¼ 340.34

CSCS qf ¼ 251.5 –

Table 1

Comparison of the first three natural frequencies of elastic plate with reference [16]

Aspect ratio, l Boundary condition The solution in this paper Exact solution [16]

1 SSSS 19.73 49.35 78.98 19.73 49.35 78.98

CSCS 28.95 54.74 69.33 28.95 54.74 69.33

1.5 SSSS 32.07 61.68 98.70 32.07 61.68 98.69

CSCS 39.09 79.53 102.22 39.08 79.52 102.21

2 SSSS 49.34 78.96 127.56 49.34 78.96 128.30

CSCS 54.74 94.59 154.87 54.76 94.60 154.76

Fig. 2. The first three dimensionless complex frequencies o vs. dimensionless follower force q for SSSS plate for H ¼ 10�5, l ¼ 1.

Z.-M. Wang et al. / Journal of Sound and Vibration 307 (2007) 250–264 257
q ¼ 0, the first three-order natural frequencies of the viscoelastic plate in Fig. 2 are exactly the same as those in
Ref. [16]. With increase of q, the real part of o decreases, while its imaginary part remains zero. With the
further increase of q, the real parts of o in the first and the second mode successively become zero, and
then the imaginary parts of o have two branches with positive and negative values. This shows that the
viscoelastic plate shows divergence instability. The first and the second order divergence load is qd1 ¼ 67.5 and
qd2 ¼ 132.10, respectively.
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Figs. 3 and 4 show the variation of the first three-order dimensionless complex frequencies of the viscoelastic
plate with dimensionless follower force q for the same dimensionless delay time H ¼ 10�5 and different aspect
ratios l ¼ 1.5 and 2, respectively. In contrast with Fig. 2, in the case of q ¼ 0, the first three natural
frequencies of the viscoelastic plate increase with the increase of aspect ratio. And with the increase of q, the
first and second divergence loads increase too.

Figs. 5–7 show the variation of the first three dimensionless complex frequencies of the viscoelastic plate
with dimensionless follower force q for the dimensionless delay time H ¼ 10�3, and different aspect ratios
Fig. 3. The first three dimensionless complex frequencies o vs. dimensionless follower force q for SSSS plate for H ¼ 10�5, l ¼ 1.5.

Fig. 4. The first three dimensionless complex frequencies o vs. dimensionless follower force q for SSSS plate for H ¼ 10�5, l ¼ 2.
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Fig. 5. The first three dimensionless complex frequencies vs. dimensionless follower force q for SSSS plate for H ¼ 10�3, l ¼ 1.

Fig. 6. The first three dimensionless complex frequencies vs. dimensionless follower force q for SSSS plate for H ¼ 10�3, l ¼ 1.5.
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l ¼ 1, 1.5 and 2, respectively. In comparison with Figs. 2–4, respectively, it indicates that when q ¼ 0,
the first three natural frequencies of the viscoelastic plate decrease slightly because of the increase of
dimensionless delay time H, the first and the second divergence loads decrease slightly with the increase
of dimensionless delay time, the imaginary parts of the first three dimensionless complex frequencies do not
remain zero but are positive values, and increase with the increase of the mode order at small dimensionless
follower force.
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Fig. 7. The first three dimensionless complex frequencies vs. dimensionless follower force q for SSSS plate for H ¼ 10�3, l ¼ 2.

Fig. 8. The first three dimensionless complex frequencies vs. dimensionless follower force q for CSCS plate for H ¼ 10�5, l ¼ 1.
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4.2. The plate with two opposite edges simply supported and other two edges clamped

Fig. 8 gives the variation of the first three dimensionless complex frequencies of the viscoelastic plate with
dimensionless follower force q for H ¼ 10�5, l ¼ 1. As can be seen in Fig. 8, with the increase of q, the real
part of o decreases, while its imaginary part remains zero. When q ¼ 143.5, the real parts of o in the first-
order mode become zero; subsequently, ReðoÞ ¼ 0, but ImðoÞ40 and ImðoÞo0. This indicates that the plate
shows divergence instability in the first-order mode; qd1 ¼ 143.5 is the first-order divergence load. With further
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increase of q, the first and third mode frequency curves merge together, the two frequencies become complex
conjugate and it forms a flutter-type instability. The load and frequency at which the plate undergoes coupled-
mode flutter are termed as the flutter load and flutter frequency, respectively, that is to say the flutter load is
qf ¼ 168.00.

Figs. 9 and 10 give the variation of the first three-order dimensionless complex frequencies of the viscoelastic
plate with dimensionless follower force q for the dimensionless delay time H ¼ 10�5, and with different aspect
Fig. 9. The first three dimensionless complex frequencies vs. dimensionless follower force q for CSCS plate for H ¼ 10�5, l ¼ 1.5.

Fig. 10. The first three dimensionless complex frequencies vs. dimensionless follower force q for CSCS plate for H ¼ 10�5, l ¼ 2.
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ratios l ¼ 1.5 and 2, respectively. In comparison with Fig. 8, it shows that the first three-order natural
frequencies of the plate increase with the increase of aspect ratio, and with the increase of l, the plate does not
show divergence instability, it only undergoes flutter instability, and the modes in which the plate undergoes
coupled-mode flutter is different from l ¼ 1.

Fig. 11 gives the variation of the first three-order dimensionless complex frequencies of the viscoelastic plate
with dimensionless follower force q for H ¼ 10�3, l ¼ 1. In comparison with Fig. 8, it shows that when q ¼ 0,
Fig. 11. The first three dimensionless complex frequencies vs. dimensionless follower force q for CSCS plate for H ¼ 10�3, l ¼ 1.

Fig. 12. The first three order dimensionless complex frequencies vs. dimensionless follower force q for CSCS plate for H ¼ 10�3, l ¼ 1.5.
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Fig. 13. The first three order dimensionless complex frequencies vs. dimensionless follower force q for CSCS plate for H ¼ 10�3, l ¼ 2.
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the first three-order natural frequencies of the viscoelastic plate decrease slightly because of the increase of H.
The plate exhibits a coupled-mode flutter, shows divergence instability in the first-order mode, and then
undergoes single-mode flutter in the first-order mode. The imaginary parts of the first three-order mode
dimensionless complex frequencies remain as positive values and not zero, and increase with the increase of the
mode order at small dimensionless follower force.

Figs. 12 and 13 give the variation of the first three dimensionless complex frequencies of the viscoelastic
plate with dimensionless follower force q for the same dimensionless delay time H ¼ 10�3, and with different
aspect ratios l ¼ 1.5 and 2, respectively. In comparison with Figs. 9 and 10, respectively, it is observed that
when q ¼ 0, the first three-order natural frequencies of the viscoelastic plate decrease slightly because of the
increase of dimensionless delay time. The first and the second mode do not couple, i.e., the plate does not
undergo flutter instability, but it undergoes single-mode flutter in the first-order mode.

5. Conclusions

This paper analyzes flutter and divergence instabilities of a viscoelastic rectangular plate constituted by the
Kelvin–Voigt model subjected to uniformly distributed tangential follower force, and deduces that the
instability type and critical load of the viscoelastic plate are dependent on dimensionless delay time H, aspect
ratio l and boundary condition. Results of the analysis of the present study can be summarized as follows:
(1)
 In the case of dimensionless delay time Hp10�5, the frequency and critical load of the non-conservative
viscoelastic plate constituted by the Kelvin–Voigt model are close to those of the non-conservative elastic plate.
(2)
 For the viscoelastic plate with four edges simply supported, the general instability type is divergence
instability, the corresponding critical load is divergence load. When the dimensionless delay time H is
invariable, with the increase of the aspect ratio l, the first three natural frequencies of the viscoelastic plate
increase in the case of q ¼ 0, the first and the second divergence loads increase too. While the aspect ratio l
keeps constant, with the increase of dimensionless delay time H, the first three natural frequencies decrease
slightly in the case of q ¼ 0, and the first and the second divergence loads also decrease slightly, the
imaginary parts of the complex frequencies of the first three-order mode do not remain zero but are
positive values, and increase with the increase of mode orders.
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(3)
 For the viscoelastic plate with two opposite edges simply supported and other two edges clamped, the
aspect ratio l has great effect on the instability type of the plate. When l ¼ 1, the plate undergoes
divergence instability first, then the plate shows flutter instability, in the case of l ¼ 1.5 and 2, the plate
only undergoes flutter instability. When the dimensionless time H keeps constant, with the increase of the
aspect ratio l, the first three natural frequencies of the plate increase, and the divergence load or the flutter
load increases too. When the aspect ratio l keeps constant, with the increase of dimensionless delay time
H, the first three natural frequencies decrease slightly, and the plate does not undergo flutter instability.
Usually, the plate shows divergence instability in the first mode, then undergoes single-mode flutter in the
first mode in the case of l ¼ 1, when l ¼ 1.5 and 2, the plate only does single-mode flutter in the first
mode. At the same time, the imaginary parts of the complex frequencies of the first three modes remain
positive values at small q, and increase with the increase of the mode orders.
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